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ABSTRACT  

 

   A modular procedure is presented to simulate moving control surfaces within an overset grid 

environment using the Navier-Stokes equations.  Gaps are modeled by locally shearing the wing 

grids instead of using separate grids to model gaps. Grid movements for control surfaces are 

defined through a separate module, which is driven by an external grid generation tool. Results are 

demonstrated for a wing with a part-span control surface. Grids for the test case are determined 

from grid sensitivity studies. Steady and unsteady pressures are validated with wind tunnel data. 

 
                                                                                                                                  

INTRODUCTION 

 

   The use of active controls is becoming more important for 

modern aerospace configurations. [1]   Efforts to reduce the 

vibrations of helicopter blades with use of active-controls 

are in progress [2]. Modeling oscillating control surfaces 

using linear aerodynamic theory is well established. 

However, higher-fidelity methods are needed to account for 

nonlinear effects, such as those that occur in transonic flow 

[3]. The aeroelastic responses of a wing with an oscillating 

control surface, computed using transonic small perturbation 

(TSP) theory, have been shown to cause important transonic 

flow effects [4] such as a reversal of control surface 

effectiveness that occurs as the shock wave crosses the hinge 

line. In order to account for flow complexities such as blade-

vortex interactions of rotor blades [5] higher-fidelity 

methods based on the Navier-Stokes equations are used. 

 

   Reference 6 presents a procedure that uses the Navier-

Stokes equations with moving-sheared grids and 

demonstrates up to 8 degrees of control-surface deflection, 

using a single grid. Later, this procedure was extended to 

accommodate larger amplitudes, based on sliding grid zones 

[7]. The sheared grid method implemented in the 

Euler/Navier-Stokes-based aeroelastic code ENSAERO [6] 

was successfully applied to active control design by industry 

[8].   

 

   Recently several papers [9, 10, 11, 12] have been 

published that present results for oscillating control surfaces 
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using the Reynolds Averaged Navier-Stokes (RANS) 

equations. References 9 and 10 report 2-D cases using an 

approach of filling gaps with overset grids. Reference 9 

compares integrated forces with an experiment at low 

oscillating frequencies whereas Ref. 10 reports parametric 

studies but with no validation. Reference 11 reports results 

for a 3D case by modeling the gap region with a smeared 

grid and compares force results with an experiment only at 

the mid-span of the flap. In Ref. 11 the grid is deformed to 

match the control surface deflections only at the section 

where the measurements are made without explicitly 

modeling the gap as in Ref. 6.  Computations using overset 

grids are reported in Ref. 12 for a case by adding a moving 

control surface to an existing blade but with no validation 

either with an experiment or another computation.  

 

   In Ref. 13 an oscillating control surface was simulated 

using the RANS-based OVERFLOW code [14] using 

overset grids in gaps and was validated with experiment for 

integrated air loads. Ref. 13 reports significant differences 

between computations and measurements, particularly for 

flap moments. While the approach presented in Ref. 13 

promises to be accurate, a promise that has yet to be realized 

in such quantities as unsteady surface pressures, it also 

requires more grid points and a more complicated grid 

generation process. Time step restrictions associated with 

tightly spaced grid points in gaps can also be an issue with 

this approach. 

 

   As an alternate approach the present work presents a 

sheared grid capability [6] embedded as a module into the 

overset-grid-based OVERFLOW code. The shearing grid 

approach has been successfully implemented in using 

patched grids [15]. In this approach the grid at the control 

surface gap has the same topology as the grid for un-
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deflected control surface. Control surface deflections are 

modeled by shearing the grid at the gap. Sheared grids 

produce accurate results for moving control surfaces [6, 15] 

and can be numerically more efficient than methods that use 

overset grids to model small gap, which are common when 

active control surfaces are used. Since the gaps size and 

control surface deflections are assumed to be small flow 

through conditions for grid points in the gap are not applied. 

 

   This work focuses on implementing and validating the 

sheared grid module for use with overset grids. In addition, 

this effort makes progress towards providing an efficient and 

robust high-fidelity analysis tool for designing active 

controls, particularly for the transonic regime. The approach 

is validated for a wing with part span control surfaces using 

unsteady pressure results from an experiment performed at 

the NASA Langley Research Center [16]. The test is 

commonly known as the BACT (Benchmark Active 

Controls Technology) test. None of the other recent papers 

[9, 10, 11, 12, 13] include validation of unsteady-surface 

pressures needed before validating integrated forces [13]. In 

addition, Refs. 9 to 13 compare only time responses with 

experiment that may be prone to uncertainties.  The strongly 

preferred method in the fixed wing community [17] is to 

compare time integrated Fourier coefficients. This approach 

eliminates the effect of start times.  In this work, Fourier 

coefficients are compared with the experiment.  

 

APPROACH 

   In this paper, the RANS equations [18] are numerically 

solved using the Pulliam-Chaussee diagonal form of the 

Beam-Warming central difference algorithm [19], along 

with the one-equation Spalart-Allmaras turbulence model 

[20]. The solutions are computed using the OVERFLOW 

code [14], which is based on an overset grid system. The 

second-order spatial and temporal accuracy options available 

in the 2.2g version of OVERFLOW are used throughout this 

analysis. 

 

   In the current version of OVERFLOW, control surface 

motions are prescribed externally [13] and the flow solver 

needs to pause while getting the deflection input. In this 

work, the shearing grid capability is embedded within the 

OVERFLOW code to avoid the computer overhead time 

associated with pausing for data transfers. Modularity is 

maintained by communicating data between grid generator 

and flow solver through internal input/output logic. A flow 

diagram of the modular approach is shown in Fig. 2. Grids 

are generated on the fly using a grid generation subroutine. 

This will facilitate embedding an active control module [5, 

8] in OVERFLOW.  

 

   The solid surface for the wing with a control surface is 

shown in Fig. 1 along with two cutting planes. One cut 

shows the grid in a constant span plane and the other shows 

the grid along the span. 

   

   The moving control surface grid is generated using the 

following equation. The control surface deflection angle in 

degrees at a given time t is defined as  

 

                                 δ = δ0 + δβ sin(ωt)                               (1)                

                                                                                                                                                                                                                             

where δ0 and δβ are the mean and maximum amplitude of the 

oscillatory control surface deflections in degrees, 

respectively. The ω and t parameters are circular frequency 

of the control surface oscillation in radians per sec and time 

in sec, respectively. All unsteady components are scaled 

with δβ converted to radians.  

 

  Once δ is known the shearing displacements of grid points 

due to control surface motion are computed for x > xc using 

 

                       Δx = x - (x-xc) cos(δ)                                   (2a) 

 

                      Δz = z - (x-xc) sin(δ)                                     (2b) 

 

where xc is the x location of control surface leading edge. 

The surface displacements are applied to shear the near body 

(NB) grid. In the normal direction the shearing is linearly 

decayed to zero up to about 50% chord length from the 

surface. The x-ray box [14] in the overset grid is placed such 

that there are no interpolations between the moving NB grid 

points and the background (BG) grid.  This will avoid 

having to re-compute interpolation coefficients every time 

step and save computational time. 

 

  In the spanwise direction displacements are linearly 

increased from zero at the beginning to full value at the end 

of each gap.  The process shown in Fig. 2 deals with volume 

meshing and flow solution steps.       

 

 

 

 

 

 

 

 

 

 

 

 

 

                Fig. 1 Typical sheared grid. 

 

Fig. 1 Typical sheared grid for part-span control surface. 
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Parallel Computing 

 

 

 

Fig. 2 Solution process. 

 

Moving Grid Module 

   In Ref. 21 a wing with a full-span moving control surface 

was modeled using a single grid and moving grids were 

directly generated by executing the Chimera Grid 

Generation Tool (CGT) [22] every time step.  Direct use of 

the CGT tool is not feasible for present work where multi-

zone grids are needed. Therefore a module that generates the 

moving grid is embedded into OVERFLOW. 

 

   For parallel computing grid zones in OVERFLOW are 

assigned to different cores by a load-balancing algorithm 

with no user control.  In the present approach it is assumed 

that the complete control surface is within a single grid zone. 

When using the MPI [23] option of OVERFLOW, the grid 

zone containing the control surface is assigned to a single 

processor without splitting the grid. However, this limitation 

could be removed if an option to assign specific processors 

to selected grid zones, similar to that implemented in 

HiMAP [24], were available in OVERFLOW. Confining a 

shearing grid module to one zone makes all computations 

within that module implicit and allows larger time steps for 

integration. Any impact on parallel efficiency can be 

minimized using a node-filling algorithm successfully 

implemented in HiMAP [24].  The present procedure of 

modeling the control surface in a single zone does not have 

any limitations when using the shared memory OpenMP 

[25] option of OVERFLOW. 

 

RESULTS 

 

Wind Tunnel Model 

   In this work computations are made about the BACT wind 

tunnel model configuration [16] that involves a wall 

mounted rectangular blade with a part-span oscillating 

control surface. A schematic diagram of the model is shown 

in    Fig. 3. The model measures 32 inches in span and 16 

inches in chord, and is made of NACA0012 airfoil sections. 

The leading edge of the control surface that starts at 45% 

span with length 9.6 inches is located at 75% chord. From 

the figure in the report it is estimated that the gap is about 

0.5% of chord. A total of 54 upper and lower surface 

pressure orifices, including 16 on the control surface, were 

used to measure surface pressures. The measured data are 

given in the form of magnitude/amplitude and phase angles 

of unsteady pressures. The phase angle is the difference in 

period between the peaks of control surface deflection and 

the pressure/force response. The amplitude is the absolute 

value of the maximum response above the time-averaged 

value. The magnitude and phase angles are computed by 

performing a Fourier analysis of the time responses.  

 

Grid Topology     

   An overset grid system generated by using CGT [22] is 

shown in Figs. 4a, 4b and 4c. The grid has near body O-H 

(wrap around airfoil in x-direction and stacked spanwise in 

y-direction) topology for the wing and a cap grid (grids 

radiating from surface) for the tip. In order to facilitate 

communications among un-connected grid points between 

NB wing and cap grids, a background Cartesian box grid 

(BG) is used.                                         

 

   Since the gap in the model is very small it is not modeled 

in the grid. The wing surface grid is sheared by applying the 

displacements due to control surface deflections using Eqn. 

(2) and a new grid is generated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Schematic diagram of the wind tunnel model. 

 

   The final grid selected is based on grid sensitivity studies 

for both spatial and temporal accuracies.   

 

Grid Sensitivity Studies  

   A case at free stream Mach number M∞ = 0.77,  angle of 

attack α = 4.0 deg  and control surface mean deflection  δ0 = 
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5.0 deg for which both mean steady and unsteady pressure 

data are available is selected for grid sensitivity studies.  The 

associated Reynolds number Re_c based on chord (c) is 3.82 

million.  

 

   First, a grid with attributes based on previous experience 

using the CGT tool [22] is selected.  For the NB wing grid 

average surface grid spacing of 0.0000125c, near-body 

stretching factor of 1.125, average chordwise spacing of 

0.005 and outer boundary (OB) grid surface location at 1.5c 

are selected.  The grid spacing at the leading edge is about 

0.0025c.  With these parameters a wing grid with 403 points 

around the airfoil section and 60 points in the normal 

direction is generated using the hyperbolic grid generator 

[22]. A spanwise grid utilizing 95 points with grid points 

clustered at the control surface edges is generated. The gaps 

which are assumed to be of size 0.05c are modeled using 5 

grid points each (see Fig 4c). Using the module available in 

CGT, a cap grid with 97x49 surface points and 60 points in 

radial direction is generated. The BG box grid has 141 points 

in each x and z directions and 82 points in the y direction.  It 

has 0.1c constant spacing up to about 5c and then stretched 

to outer boundary located at about 18c.  For this selected 

grid (SG) topology with 3-grids, effects of various grid 

attributes on sectional lift coefficient (cl), moment 

coefficient about leading edge (cm) and drag coefficient (cd) 

are studied to determine the final grid.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4a Grid Topology-Near body and a portion of box grid. 

 

   Steady-flow computations at M∞ = 0.77, α = 4.0 deg,        

δ0 = 5.0 deg and Re_c = 3.82 million are performed using a 

variable time-step option in OVERFLOW without sub-

iteration. Figures 5 and 6 show convergence histories of 

residuals and force coefficients, respectively. The residuals 

show three orders drop in about 3000 iterations whereas the 

force coefficients show that results converge in about 2000 

iterations. The rest of the steady-state computations are 

made using 4000 iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4b Near body wing and cap grids. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 4c Grid at gap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 5 Convergence residual at M∞ = 0.77, α = 4.0, δ0  = 5.0 

deg and Re_c = 3.82 million. 
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Fig. 6 Convergence steady for cl, cm and cd at M∞ = 0.77,    

α = 4.0, δ0 = 5.0 deg and Re_c = 3.82 million. 

 

    Normal grid spacing near the surface is varied from 

0.00001 to 0.00003.   As observed in Fig. 7 the initially 

selected spacing of 0.0000125 is considered adequate since 

force coefficients differs less than 0.2% from values at 

spacing 0.00001.  The surface stretching factor is varied 

from 1.1 to 1.3. Figure 8 shows that a surface stretching 

factor of 1.125 is adequate. These selected parameters yield 

an average y+ value of 1.09 which is considered adequate to 

resolve flows at the surface.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Effect of normal spacing at surface on cl, cm and  

cd at M∞ = 0.77, α = 4.0 deg ,  δ0 = 5.0 deg and  

Re_c = 3.82 million. 

 

   To study adequacy of the grid in the chordwise direction, 

starting from the SG grid (403 points), computations are 

made using a series of grids with increased spacing: double 

the spacing, quadruple the spacing and octuple the spacing, 

while keeping the remaining of the grid parameters the 

same. This is accomplished by modifying the selected grid 

(403 points) using the cubic spline interpolations in CGT 

[22].    Figure 9 shows the effect of grid refinement in the x-

direction on cl, cm and cd.  As seen cl, cm and cd converge for 

the selected grid.  The chordwise spacing corresponding to 

403 grid points is adequate.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Effect of normal grid stretching factor (SF)  

on cl,  cm and cd at M∞ = 0,.77, α = 4.0, δ0  = 5.0 deg  

and Re_c = 3.82 million.    

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Effects of chordwise spacing on cl, cm and cd at  

M∞ = 0.77, α = 4.0, δ0  = 5.0 deg and Re_c = 3.82 million.  

 

 

   Using the above selected grid parameters the effect of 

location of the outer boundary (OB) of back ground grid is 

studied next. From Fig. 10 it is seen that the outer boundary 

of the SG grid at 18c is adequate since results does not 

change after about 15c.     
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Fig. 10 Effect of outer boundary location spacing on cl, cm, 

and cd at M∞ = 0.77, α = 4.0, δ0 = 5.0 deg and Re_c = 3.82 

million.  

 

   Finally, for steady computations the effect of number of 

chord-wise grid lines in the gap region is studied. The 

average changes for 3 and 4 lines from 5 lines are 7.3% and 

0.5%, respectively. The grid with 5 lines of SG is considered 

adequate. 

 

   Unsteady computations are performed at M∞ = 0.77,          

α = 4.0 deg, Re_c = 3.82 million, k = 0.22 and δβ = 5.0 deg 

corresponding to a test case in the experiment. Computations 

are performed with a variable number of steps per cycle 

(NSPC). It was found that NSPC = 1200 produced a stable 

solution without using Newton sub-iterations (NWIT).  The 

rest of the time step convergence studies are made using 

NSPC = 1200. 

 

   Since Newton sub-iterations are required to maintain 2
nd

 

order time accuracy, the next study involved the variation of 

number of Newton sub-iterations.  Computations are made 

for 4 cycles with increasing NWIT.   Figure 11 shows the 

responses of cl, cm, and cd for NWIT =16. The solutions 

during the first cycle of the computation have not achieved 

periodic behavior and should not be quantitatively evaluated. 

The solutions for cycles 2-4 are periodic. Figure 12 shows 

convergence plots of magnitude and phase angle of unsteady 

cl with respect to increasing NWIT. Results converged at 

NWIT = 16.  Rest of the unsteady computations are made 

using 4 cycles of oscillations with NSPC = 1200 and NWIT 

= 16. 

 

   Within the range of parameters considered for grid 

sensitivity studies it was observed that the outer boundary 

location had relatively more effect on cl, cm and cd. As seen 

in Fig. 10, the variation is 40% for cd for changing OB 

location from 2.5c to 18c. As a result, effect of outer 

boundary location is studied for unsteady cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Response of unsteady cl, cm, and cd, at M∞ = 0.77,  

α = 4.0 deg, δ0 = 0.0 deg, δβ = 5.0 deg. k = 0.22, and  

Re_c = 3.82 million. 

 

 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Effect of number of Newton sub-iterations on 

magnitude and phase angles of unsteady cl for M∞ = 0.77,    

α = 4.0 deg, δ0 = 0.0 deg, δβ = 5.0 deg, k = 0.22, and Re_c = 

3.82 million. 

 

    Figure 13 shows the effect of outer boundary location on 

magnitude and phase angles of unsteady cl for M∞ = 0.77, α 

= 4.0 deg, δ0 = 0.0 deg, δβ = 5.0 deg, k = 0.22, and Re_c = 

3.82 million. As expected phase angle is more sensitive than 

magnitude. However, the changes in the values for both 

magnitude and phase angles are less than 0.1% from 10c to 

18c.   
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Fig. 13 Effect of outer boundary location on magnitude and 

phase angles of unsteady cl for M∞ = 0.77, α = 4.0 deg,        

δ0 = 0.0 deg, δβ = 5.0 deg, k = 0.22, and Re_c = 3.82 million. 

 

Test Cases 

   Computations are made for two static cases (α = 0.0 and 

4.0 deg) and two dynamic cases (k = 0.11 and 0.22) for 

which surface pressure data are available in public domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Comparison between computed and measured values 

of steady cp for M∞ = 0.77, α = 0.0, δ0 = 5.0 deg and   

Re_c = 3.96 million. 

 

   Figure 14 shows a comparison of upper and lower surface 

steady cp at M∞ = 0.77, α = 0.0 deg, δ0 = 5.0 deg and Re_c = 

3.96 million.  In general results compare well for both upper 

and lower surfaces. The data from experiments appears 

slightly scattered around x/c = 0.65 where an un-deflected 

spoiler (0.6  x/c  0.75) is located.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Comparison between computed and measured values 

of steady cp for M∞ = 0.77, α = 4.0, δ0 = 5.0 deg and Re_c = 

3.83 million. 

 

   Figure 15 shows a comparison of upper and lower surface 

steady cp at M∞ = 0.77, α = 4.0 deg, δ0 = 5.0 deg and Re_c = 

3.83 million. For this case pressures from experiment are 

available for all 30 upper surface pressures taps but only for 

5 lower surface pressure taps. Both upper and lower surface 

pressures compare well between computations and 

experiment.  Around x/c = 0.2 the experiment has slightly 

lower values than the computation.  For x/c between 0.4 and 

0.8 the experiment shows slightly higher values than the 

computation.  For this case the computed cl and cm are 4 % 

higher and 6% lower than the measured values, respectively.  

 

   Computations are made for control surface oscillating at 

5Hz (k = 0.1083) and 10 Hz (k = 0.2166). Figure 16 shows 

the comparison of computed results with experiment for in-

phase and out-of-phase components of upper-surface 

oscillatory pressure at M∞ = 0.77, α = 0.0 deg, δ0 = 0.0 deg, 

δβ = 2.0 deg, k = 0.1083, and Re_c = 3.96 million. Both 

components compare well with the experiment. Experiment 

shows a slight jump the in-phase value around x/c = 0.60 

where the leading edge of the un-deflected spoiler (not 

modeled in this paper) is located. Possible small deflections 

of the spoiler, details of which are not available in the 

experimental report, might have caused this discrepancy.   

 

     Figure 17 shows the comparison of computed results with 

experiment for in-phase and out-of-phase components of 

upper-surface oscillatory pressure at M∞ = 0.77, α = 4.01 

deg, δ0 = 0.0 deg, δβ = 3.87 deg, k = 0.2166 and Re_c = 3.86 

million. Both components compare well with the 

experiment. Computations do a good job in capturing the 

peaks near the shock-wave around x/c = 0.31 and at leading 

edge of the control surface. Experiment shows a slight jump 

in-phase value around x/c = 0.60 where the leading edge of 

the spoiler is located.  
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Fig. 16 Comparison between computed and measured values 

of in-phase and out-of-phase components of upper-surface 

oscillatory pressures for M∞ = 0.77, α = 0.0 deg, k = 0.1083, 

δ0 = 0.0, δβ = 2.0 deg and Re_c = 3.96 million. 

 

  Instantaneous surface pressure, spanwise velocity contours 

and chordwise density contours corresponding to maximum 

control surface deflection of case at 10 Hz are shown in Fig. 

18. Formation of vortices at the gap can be seen in Fig. 18b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 Comparison between computed and measured values 

of in-phase and out-of-phase components of upper surface 

oscillatory pressures for M∞ = 0.77, α = 4.01 deg,                 

k = 0.2166, δ0 = 0.0, δβ = 3.86 deg and Re_c = 3.86 million. 

 

  All computations are made using the OpenMP version of 

OVERFLOW on NASA’s Pleiades super-cluster [26, 27]. 

The final grid with 4.21 million points needed 5.6 hrs of wall 

clock time per cycle (NSPC = 1200 and NWIT =16) on 20 

cores. An order of magnitude increase in speed can be 

achieved when this calculation is extended using MPI 

version of OVERFLOW.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Surface pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

(b) Spanwise velocity contours at control surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Chordwise density contours at mid span of control 

surface. 

 

 Fig. 18 Snapshots at the peak control surface amplitude for 

M∞ = 0.77, α = 4.01 deg, k = 0.2166, δ0 = 0.0, δβ = 3.86 deg 

and Re_c = 3.86 million.  
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CONCLUSIONS 

 

    Computations of the flows over part-span oscillating 

control surfaces are performed using the Reynolds-Averaged 

Navier-Stokes equations. A modular embedded sheared-grid 

approach in the context of a general purpose overset based 

CFD code is used to model the oscillating control surface. 

The procedure is validated by comparing unsteady pressures 

and integrated forces with experiment. Grids are selected 

based on detailed grid sensitivity studies that involved 

effects of chordwise spacing, near surface spacing, near 

surface stretching factor and outer boundary location. Steady 

computations show that results are more sensitive to outer 

boundary location than other parameters. This development 

can be readily used for conducting simulations with active 

controls.  
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